Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 268(Pt 2): 131365, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583829

RESUMO

Wounds are considered one of the most critical medical conditions that must be managed appropriately due to the psychological and physical stress they cause for patients, as well as creating a substantial financial burden on patients and global healthcare systems. Nowadays, there is a growing interest in developing nanofiber mats loaded with varying plant extracts to meet the urgent need for advanced wound ressings. This study investigated the development and characterization of poly(lactic acid) (PLA)/ poly(ethylene glycol) (PEG) nanofiber membranes incorporated with Ora-pro-nóbis (OPN; 12.5, 25, and 50 % w/w) by the solution-blow-spinning (SBS) technique. The PLA/PEG and PLA/PEG/OPN nanofiber membranes were characterized by scanning electron microscopy (SEM), thermal properties (TGA and DSC), Fourier transform infrared spectroscopy (FTIR), contact angle measurements and water vapor permeability (WVTR). In addition, the mats were analyzed for swelling properties in vitro cell viability, and fibroblast adhesion (L-929) tests. SEM images showed that smooth and continuous PLA/PEG and PLA/PEG/OPN nanofibers were obtained with a diameter distribution ranging from 171 to 1533 nm. The PLA/PEG and PLA/PEG/OPN nanofiber membranes showed moderate hydrophobicity (~109-120°), possibly preventing secondary injuries during dressing removal. Besides that, PLA/PEG/OPN nanofibers exhibited adequate WVTR, meeting wound healing requirements. Notably, the presence of OPN gave the PLA/PEG membranes better mechanical properties, increasing their tensile strength (TS) from 3.4 MPa (PLA/PEG) to 5.3 MPa (PLA/PEG/OPN), as well as excellent antioxidant properties (Antioxidant activity with approximately 45 % oxidation inhibition). Therefore, the nanofiber mats based on PLA/PEG, especially those incorporated with OPN, are promising options for use as antioxidant dressings to aid skin healing.

2.
Int J Biol Macromol ; 230: 123424, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36708906

RESUMO

The development of active packaging based on biodegradable material and incorporating active compounds, such as essential oil, is a new technique to ensure food safety without harming the environment. In this study, nanofiber mats of poly (lactic acid)/ polyethylene glycol (PLA/PEG) blend incorporated with peppermint essential oil (PO) at different ratios (5-20 % v/w) were produced by solution-blow-spinning (SBS) for potential packaging application. Electron microscopy showed a cylindrical and interlaced morphology for PLA/PEG/PO and a significant increase in the diameter (139-192 nm) of the nanofibers by increasing PO content. All nanofibers showed high thermal stability (278-345 °C) suitable for use in the food industry. Nuclear magnetic resonance (13C NMR) spectrum confirmed PO in the nanofibers after SBS. ATR-FTIR spectral analysis supported the chemical composition of the nanofiber mats. PO addition led to obtaining hydrophobic nanofibers, enhancing the contact angle to 122° and decreasing water vapor permeability (60 % reduction compared to the PLA/PEG (3.0 g.mm.kPa-1.h-1.m-2). Although the PLA/PEG/20%PO nanofibers did not show halo formation in 24 h, they effectively extended the strawberries' shelf-life at 25 °C, evidencing PO release over time. It also reduced weight loss (2.5 % and 0.3 % weight loss after 5 days for PLA/PEG and PLA/PEG/20%PO, respectively) and increased firmness (8-12 N) for strawberries packed with the nanofiber mats. It is suggested that PLA/PEG films incorporating PO may be used as an active, environmentally friendly packaging material.


Assuntos
Nanofibras , Óleos Voláteis , Nanofibras/química , Mentha piperita , Poliésteres/química , Embalagem de Alimentos/métodos , Redução de Peso , Ácido Láctico/química
3.
Biosens Bioelectron ; 199: 113875, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34922318

RESUMO

On-site monitoring the presence of pesticides on crops and food samples is essential for precision and post-harvest agriculture, which demands nondestructive analytical methods for rapid, low-cost detection that is not achievable with gold standard methods. The synergy between eco-friendly substrates and printed devices may lead to wearable sensors for decentralized analysis of pesticides in precision agriculture. In this paper we report on a wearable non-enzymatic electrochemical sensor capable of detecting carbamate and bipyridinium pesticides on the surface of agricultural and food samples. The low-cost devices (

Assuntos
Técnicas Biossensoriais , Praguicidas , Dispositivos Eletrônicos Vestíveis , Agricultura , Inocuidade dos Alimentos , Praguicidas/análise , Poliésteres
4.
ACS Appl Mater Interfaces ; 13(27): 31406-31417, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34185501

RESUMO

The use of ultraviolet (UV) and blue irradiation to sterilize surfaces is well established, but commercial applications would be enhanced if the light source is replaced with ambient light. In this paper, it is shown that nanofibers can be explored as an alternative methodology to UV and blue irradiation for bacterial inactivation. It is demonstrated that this is indeed possible using spun nanofibers of poly[lactic-co-(glycolic acid)] (PLGA). This work shows that PLGA spun scaffolds can promote photoinactivation of Staphylococcus aureus and Escherichia coli bacteria with ambient light or with laser irradiation at 630 nm. With the optimized scaffold composition of PLGA85:15 nanofibers, the minimum intensity required to kill the bacteria is much lower than in antimicrobial blue light applications. The enhanced effect introduced by PLGA scaffolds is due to their nanofiber structures since PLGA spun nanofibers were able to inactivate both S. aureus and E. coli bacteria, but cast films had no effect. These findings pave the way for an entirely different method to sterilize surfaces, which is less costly and environmentally friendly than current procedures. In addition, the scaffolds could also be used in cancer treatment with fewer side effects since photosensitizers are not required.


Assuntos
Eletricidade , Escherichia coli/fisiologia , Viabilidade Microbiana/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Staphylococcus aureus/fisiologia , Raios Ultravioleta , Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Viabilidade Microbiana/efeitos da radiação , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/efeitos da radiação
5.
ACS Appl Mater Interfaces ; 13(22): 26237-26246, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34038087

RESUMO

Renewable cellulose substrates with submicron- and nanoscale structures have revived interest in paper electronics. However, the processes behind their production are still complex and time- and energy-consuming. Besides, the weak electrolytic properties of cellulose with submicron- and nanoscale structures have hindered its application in transistors and integrated circuits with low-voltage operation. Here, we report a simple, low-cost approach to produce flexible ionic conductive cellulose mats using solution blow spinning, which are used both as dielectric interstrate and substrate in low-voltage devices. The electrochemical properties of the cellulose mats are tuned through infiltration with alkali hydroxides (LiOH, NaOH, or KOH), enabling their application as dielectric and substrate in flexible, low-voltage, oxide-based field-effect transistors and pencil-drawn resistor-loaded inverters. The transistors exhibit good transistor performances under operation voltage below 2.5 V, and their electrical performance is strictly related to the type of alkali ionic specie incorporated. Devices fabricated on K+-infiltrated cellulose mats present the best characteristics, indicating pure capacitive charging of the semiconductor. The pencil-drawn load resistor inverter presents good dynamic performance. These findings may pave the way for a new generation of low-power, wearable electronics, enabling concepts such as the "Internet of Things".

6.
Int J Biol Macromol ; 165(Pt B): 2974-2983, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33122067

RESUMO

We report on gelatin films incorporating rosin-grafted cellulose nanocrystals (r-CNCs), which fulfill the most relevant requirements for antimicrobial packaging applications. Transparent gelatin/r-CNCs bionanocomposite films (0.5-6 wt% r-CNCs) were obtained by solution casting and displayed high UV-barrier properties, which were superior to the most used plastic packaging films. The gelatin/r-CNCs films exhibited a moderate water vapor permeability (0.09 g mm/m2 h kPa), and high tensile strength (40 MPa) and Young's modulus (1.9 GPa). The r-CNCs were more efficient in improving the optical, water vapor barrier and tensile properties of gelatin films than conventional CNCs. Grafting of rosin on CNCs resulted in an antimicrobial nanocellulose that inhibited the growth of Staphylococcus aureus and Escherichia coli. The antibacterial properties of r-CNCs were sustained in the gelatin films, as demonstrated by agar diffusion tests and proof-of-principle experiments involving cheese storage. Overall, the incorporation of r-CNCs as active fillers in gelatin films is a suitable approach for producing novel eco-friendly, antimicrobial packaging materials.


Assuntos
Celulose/química , Embalagem de Alimentos , Gelatina/química , Resinas Vegetais/química , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Celulose/farmacologia , Gelatina/síntese química , Gelatina/farmacologia , Humanos , Nanopartículas/química , Permeabilidade , Resinas Vegetais/síntese química , Resinas Vegetais/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Vapor , Resistência à Tração
7.
ACS Sens ; 5(6): 1814-1821, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32515185

RESUMO

This work describes the development of an electronic nose (e-nose) based on carbon nanocomposites to detect clove essential oil (CEO), eugenol (EUG), and eugenyl acetate (EUG.ACET). Our e-nose system comprises an array of six sensing units modified with nanocomposites of poly(aniline), graphene oxide, and multiwalled carbon nanotubes doped with different acids, dodecyl benzene sulfonic acid, camphorsulfonic acid, and hydrochloric acid. The e-nose presented an excellent analytical performance to the detected analytes (CEO, EUG, and EUG.ACET) with high sensitivity and reversibility. The limit of detection was lower than 1.045 ppb, with response time (<13.26 s) and recovery time (<106.29 s) and low hysteresis. Information visualization methods (PCA and IDMAP) demonstrated that the e-nose was efficient to discriminate the different concentrations of analyte volatile oil compounds. PM-IRRAS measurements suggest that the doping mechanism of molecular architectures is composed of a change in the oscillation energy of the characteristic dipoles and changes in the molecular orientation dipoles C═C and C═O at 1615 and 1740 cm-1, respectively. The experimental results indicate that our e-nose system is promising for a rapid analysis method to monitor the quality of essential oils.


Assuntos
Nanocompostos , Nanotubos de Carbono , Óleos Voláteis , Syzygium , Óleo de Cravo , Nariz Eletrônico
8.
Acta Biomater ; 51: 161-174, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28069500

RESUMO

The control of cell behaviour through material geometry is appealing as it avoids the requirement for complex chemical surface modifications. Significant advances in new technologies have been made to the development of polymeric biomaterials with controlled geometry and physico-chemical properties. Solution blow spinning technique has the advantage of ease of use allowing the production of nano or microfibres and the direct fibre deposition on any surface in situ. Yet, in spite of these advantages, very little is known about the influence of such fibres on biological functions such as immune response and cell migration. In this work, we engineered polymeric fibres composed of either pure poly(lactic acid) (PLA) or blends of PLA and polyethylene glycol (PEG) by solution blow spinning and determined their impact on dendritic cells, highly specialised cells essential for immunity and tolerance. We also determined the influence of fibres on cell adhesion and motility. Cells readily interacted with fibres resulting in an intimate contact characterised by accumulation of actin filaments and focal adhesion components at sites of cell-fibre interactions. Moreover, cells were guided along the fibres and actin and focal adhesion components showed a highly dynamic behaviour at cell-fibre interface. Remarkably, fibres did not elicit any substantial increase of activation markers and inflammatory cytokines in dendritic cells, which remained in their immature (inactive) state. Taken together, these findings will be useful for developing new biomaterials for applications in tissue engineering and regenerative medicine.


Assuntos
Movimento Celular , Células Dendríticas/citologia , Engenharia Tecidual/métodos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Biomarcadores/metabolismo , Adesão Celular , Diferenciação Celular , Linhagem Celular , Citocinas/metabolismo , Células Dendríticas/ultraestrutura , Camundongos , Fenótipo , Soluções , Zixina/metabolismo
9.
Sensors (Basel) ; 11(6): 6425-34, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163963

RESUMO

A low-cost sensor array system for banana ripeness monitoring is presented. The sensors are constructed by employing a graphite line-patterning technique (LPT) to print interdigitated graphite electrodes on tracing paper and then coating the printed area with a thin film of polyaniline (PANI) by in-situ polymerization as the gas-sensitive layer. The PANI layers were used for the detection of volatile organic compounds (VOCs), including ethylene, emitted during ripening. The influence of the various acid dopants, hydrochloric acid (HCl), methanesulfonic acid (MSA), p-toluenesulfonic acid (TSA) and camphorsulfonic acid (CSA), on the electrical properties of the thin film of PANI adsorbed on the electrodes was also studied. The extent of doping of the films was investigated by UV-Vis absorption spectroscopy and tests showed that the type of dopant plays an important role in the performance of these low-cost sensors. The array of three sensors, without the PANI-HCl sensor, was able to produce a distinct pattern of signals, taken as a signature (fingerprint) that can be used to characterize bananas ripeness.


Assuntos
Grafite/análise , Absorção , Compostos de Anilina/análise , Benzenossulfonatos/análise , Cânfora/análise , Desenho de Equipamento , Etilenos/análise , Frutas , Gases , Mesilatos/análise , Musa , Polímeros/química , Espectrofotometria Ultravioleta/métodos , Ácidos Sulfônicos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA